

Shubham Parashar*

Motivation

Challenges

- 1. Vision-language models (VLMs) excel in zero-shot recognition but their performance varies across visual concepts. For example, CLIP achieves 60-80% accuracy on ImageNet but drops to <10% for concepts like night snake, presumably due to limited presence in VLM's pretraining data.
- 2. We discover rare concepts in the VLM's pretraining data that downstream applications, such as multimodal chatbots (e.g., GPT-4Vision) and text-to-image models (e.g., Stable Diffusion), fail to recognize or generate.

Failures of VLM-based applications on rare concepts

Measuring Concept Frequency in Pretraining Data

Approach

- 1. Use an LLM to enumerate all synonyms for a given visual concept.
- 2. Retrieve all pretraining captions that contain any of these synonyms.
- 3. Filter out irrelevant captions with an LLM like LLaMA-2.
- 4. Count the number of relevant captions as concept frequency.

The Neglected Tails in Vision-Language Models Deva Ramanan James Caverlee Xiangjue Dong Yanan Li Zhiqiu Lin* Tian Liu* Shu Kong

The Long-Tail and Biased Performance

Visual concepts in VLM pretraining data (LAION-400M and LAION-2B) exhibit a long-tailed distribution, strongly correlating with the biased zero-shot accuracy.

How to Address the Biases?

Motivation:

To mitigate the biased zero-shot classification performance of VLMs, we propose **RE**trieval Augmented Learning. REAL consists of two novel solutions, a prompt-based approach and a retrieval augmented strategy.

REAL-prompt prompts with the most frequent synonyms found in the pretraining captions.

Freq.

586

27,234

738

1923

37,814

69

892

oceanliner

prairie grouse

prairie chicken

Accuracy

30% +46%

22% +40%

40% +46%

68% +24%

REAL-linear retrieves relevant pretraining images in the VLM's pretraining dataset, and learns a linear classifier on such data.

State-of-the-art zero-shot recognition performance

	Method	ImageNet	Flowers	Cars	Aircraft	Pets	Food	DTD	EuroSAT	Avg
Zero-Shot Prompting	prompt template									
	"{concept}"	60.7	63.8	78.1	12.6	83.3	80.1	48.8	28.6	57.0
	"a photo of {concept}"	62.5	66.5	77.2	15.8	84.0	80.3	52.8	36.6	59.5
	OpenAI templates	62.9	<u>68.0</u>	79.2	16.7	86.7	80.9	54.5	<u>51.5</u>	62.6
	DCLIP [1]	62.1	- <u></u>			84.6	80.1	51.9	36.8	
	CuPL ²	63.7	65.8	80.0	17.8	87.4	79.5	<u>59.1</u>		
	REAL-Prompt	<u>63.6</u>	76.6	82.7	18.0	88.8	81.0	59.9	57.5	66.0
	REACT (10K) [3]									
Retrieval Augmented	Locked-Text	<u>65.7</u>	<u>73.1</u>	88.5	24.5	89.2	81.8	49.8	<u>51.1</u>	65.5
	Gated-Image	64.2	72.3	88.1	<u>24.8</u>	89.5	83.0	<u>51.4</u>	45.4	64.8
	REAL-Linear (500)	65.9	78.8	84.4	29.6	89.5	81.4	61.5	51.5	67.8

Exceptional efficiency

REAL-Linear is significa efficient than REACT [3] previous state-of-the-ar of zero-shot recognition based on retrieval augn learning.

Improving Text to Image Generation

[2] Pratt, Sarah, et al (2023). "What does a platypus look like? generating customized prompts for zero-shot image classification." In: CVPR. [3] Liu, Haotian, et al. (2023). "Learning customized visual models with retrieval-augmented knowledge." In: CVPR.

Results

antly more	Stage Resource		REACT [3]	REAL (500)	Relative Cost
[], the Irt method	Retrieval	retrieved examples time storage	400M 200 hrs 10 TB	0.5M 6 hrs 25 GB	0.1% 3% 0.25%
n (which is nented	Learning	training images time # of learned parameters GPU memory	10M 256 hrs 87M 256 GB	0.5M 2 mins 0.5M 2 GB	5% 0.01% 0.6% 0.8%

We show that prompting SD-XL and DALLE-3 with the most frequent synonym found by REAL-Prompt leads to more accurate generations.

References

[1] Menon, Sachit, and Carl Vondrick (2023). "Visual classification via description from large language models." In: ICLR.