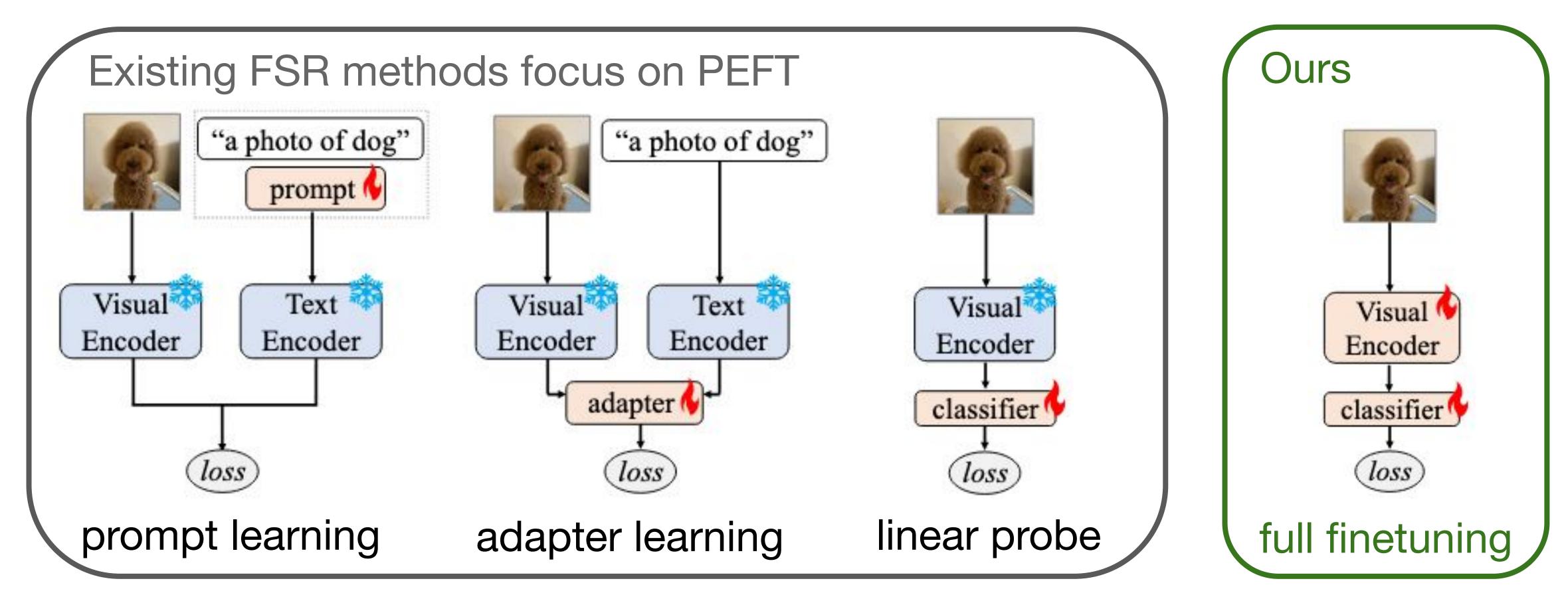


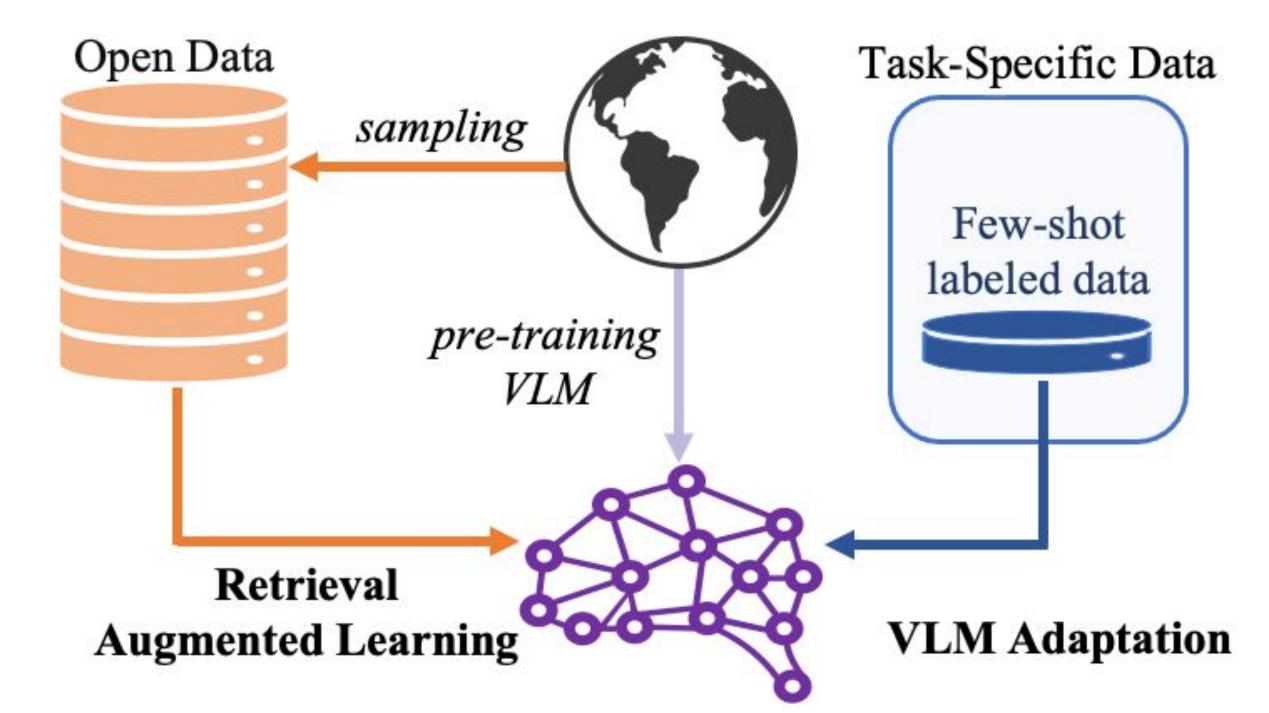
Problem Formulation in the Open World

Few-Shot Recognition (FSR) aims to solve a recognition task by training over only a few labeled task-specific examples per concept concerned by the task.

- Recent FSR methods commonly adopt parameter-efficient finetuning (PEFT) with a Vision-Language Model (VLM), which learns a small number of parameters.
- Instead, taking the perspective of *data annotation*^[1] that **prioritizes accuracy**, we solve FSR by exploring more methods to adapt a VLM.

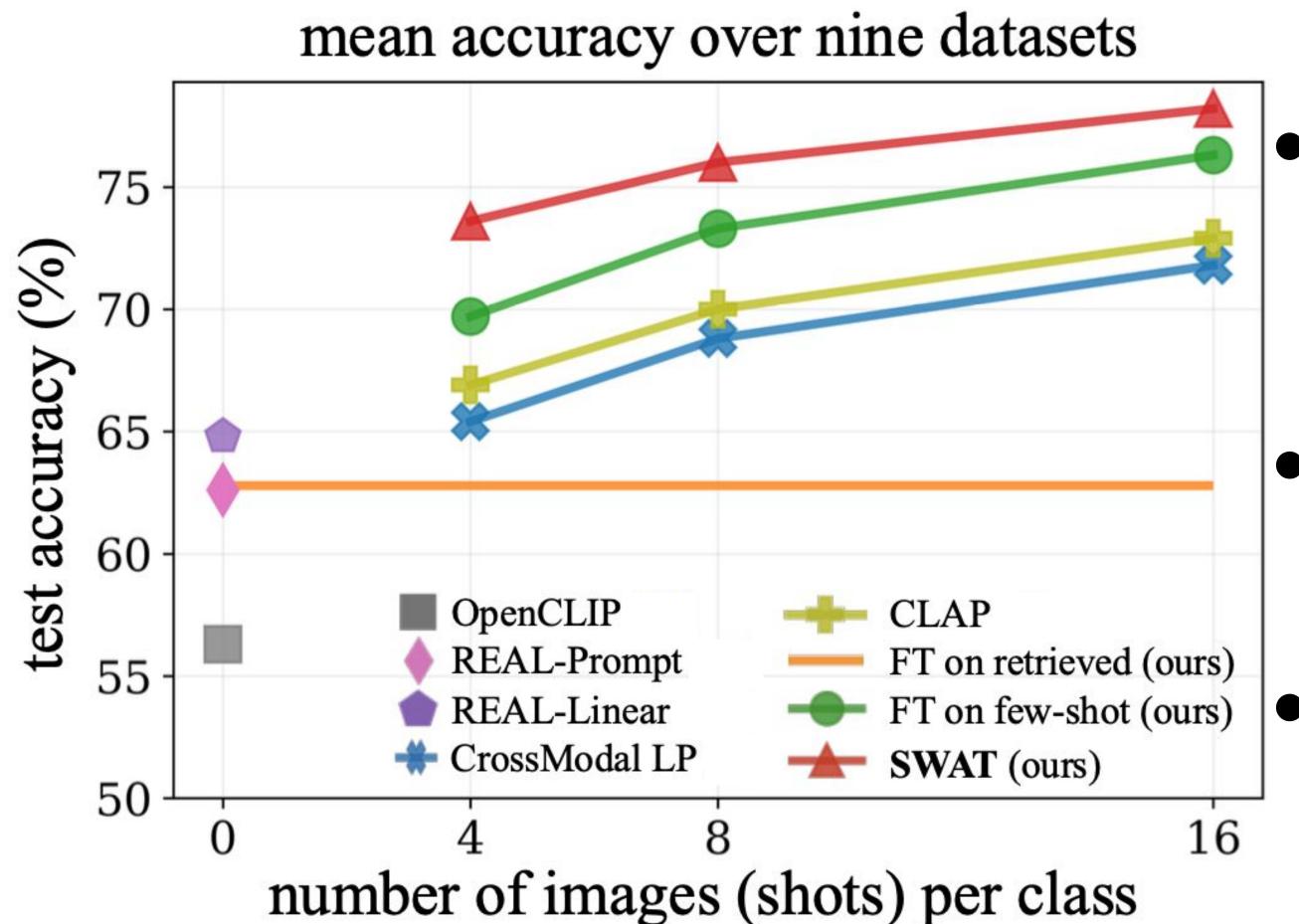


Open-World Pretraining and Open-Data Retrieval



- We exploit the extraordinary zero-shot transfer capability of an **open-world** pretrained foundational VLM.
- We retrieve open data (esp. the VLM's publicly-available pretraining dataset^[2] to augment the limited number of labeled task-specific data.

Performance Overview



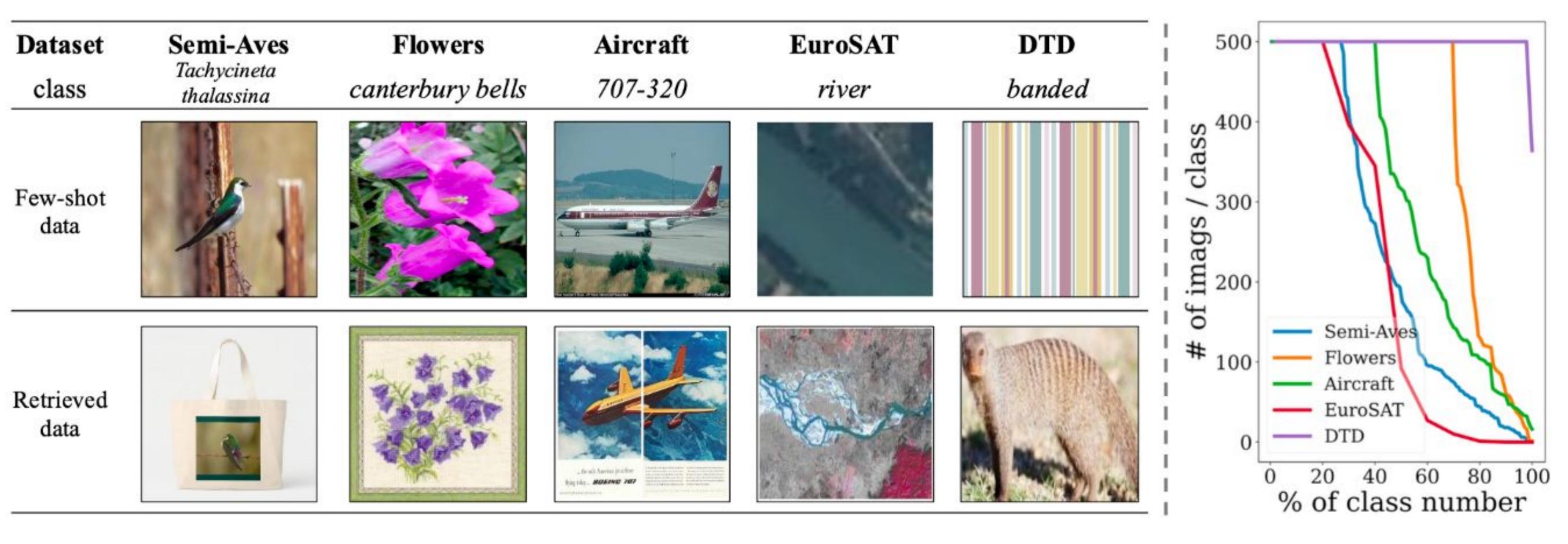
- Finetuning on a large amount of retrieved a barely surpass SOTA zero-shot methods due to domain gaps and imbalance distributions.
- Simply finetuning a VLM on few-shot examples alone outperforms existing FSR methods by 3 in accuracy.
- Our method SWAT outperforms SOTA FSR by >6 in accuracy.

Few-Shot Recognition via Stage-Wise Retrieval-Augmented Finetuning

Tian Liu¹

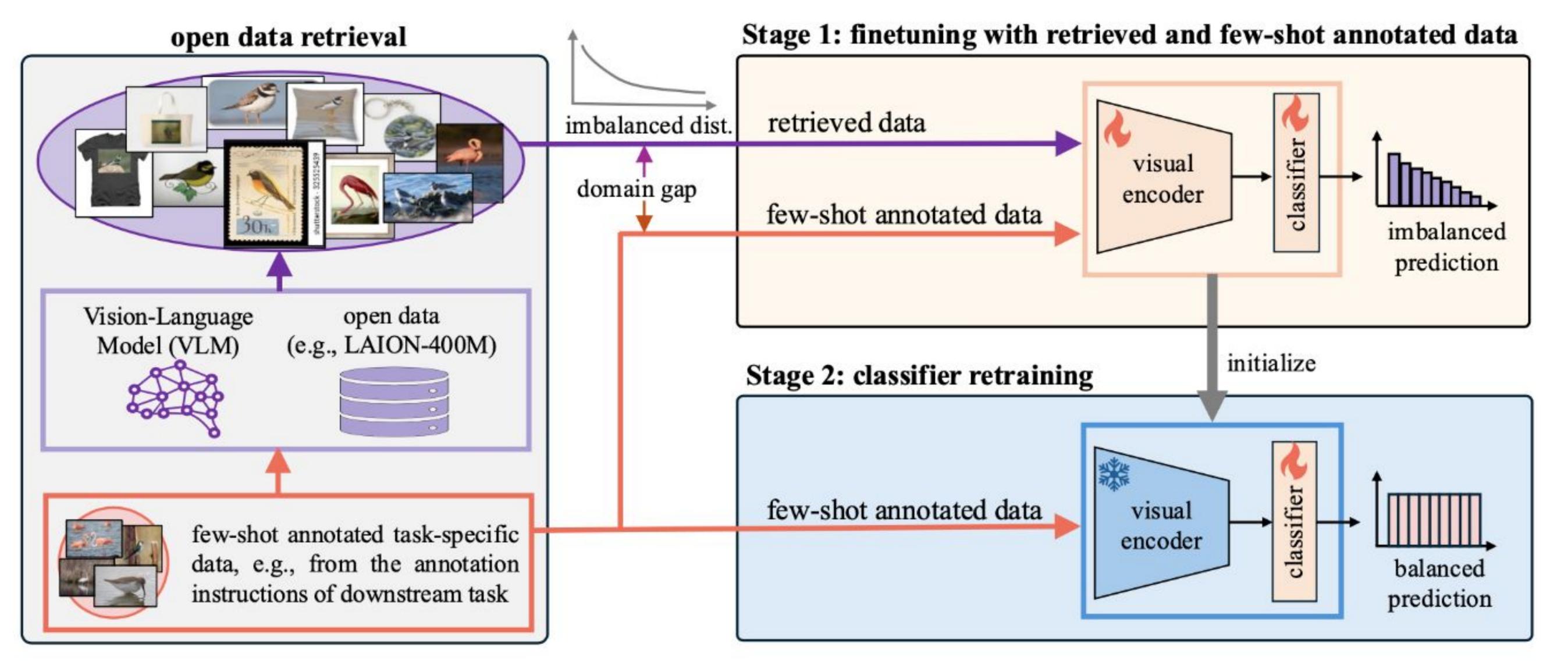
Huixin Zhang¹ ¹Texas A&M University

Domain gaps and imbalanced distributions exhibited by the retrieved data

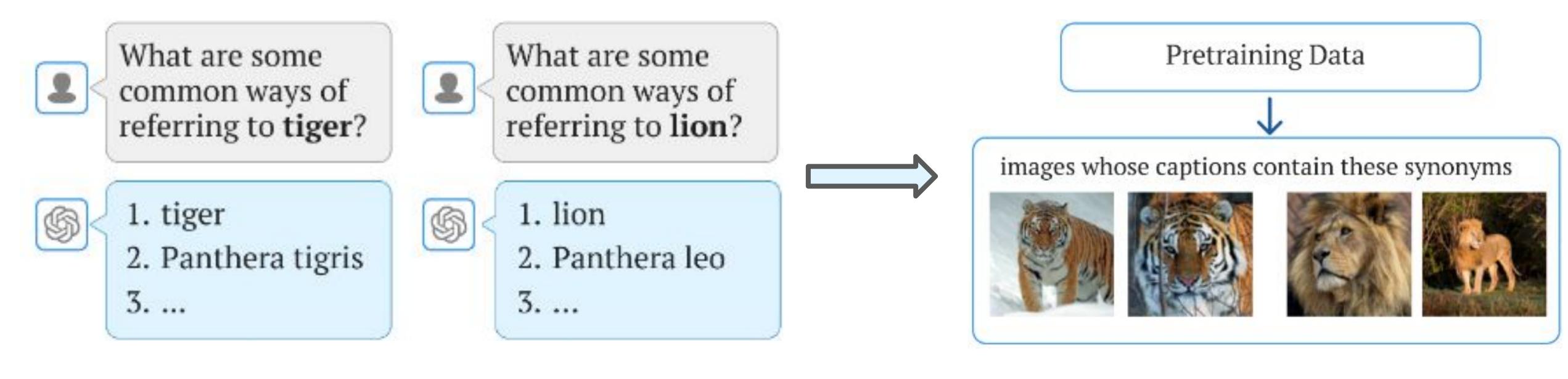


Addressing the above issues by SWAT (Stage-Wise retrieval-Augmented fineTuning)

- Decouple representation learning and classifier learning to mitigate imbalanced training ^[3].
- Retraining the classifier practices transfer learning to mitigate domain gaps.



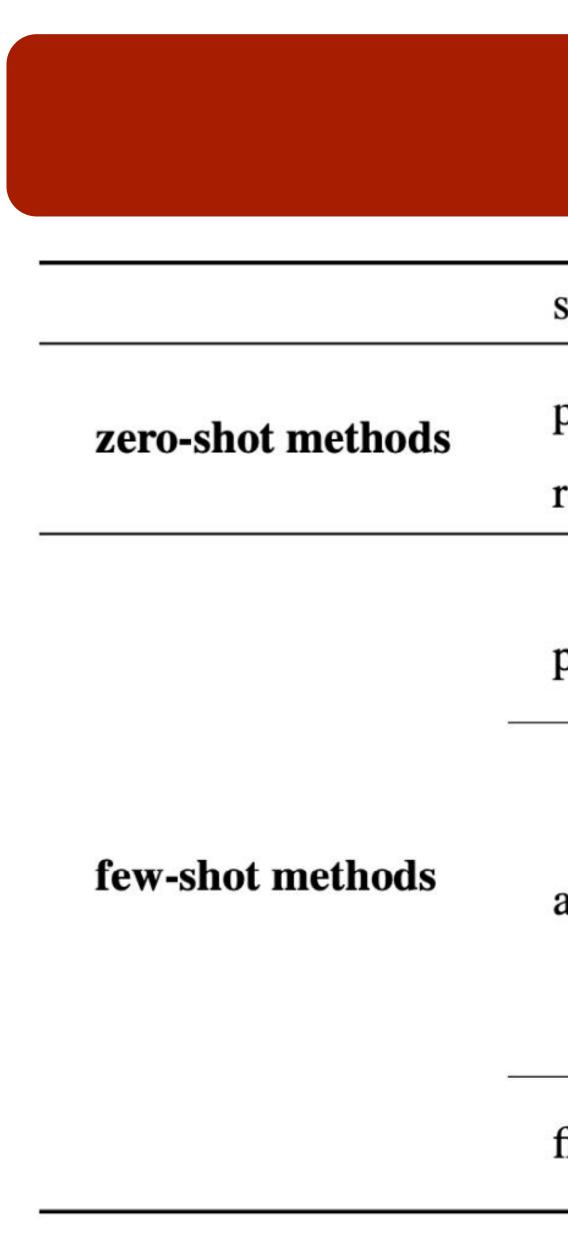
"String-matching" based retrieval improves efficiency and diversity.^[4]



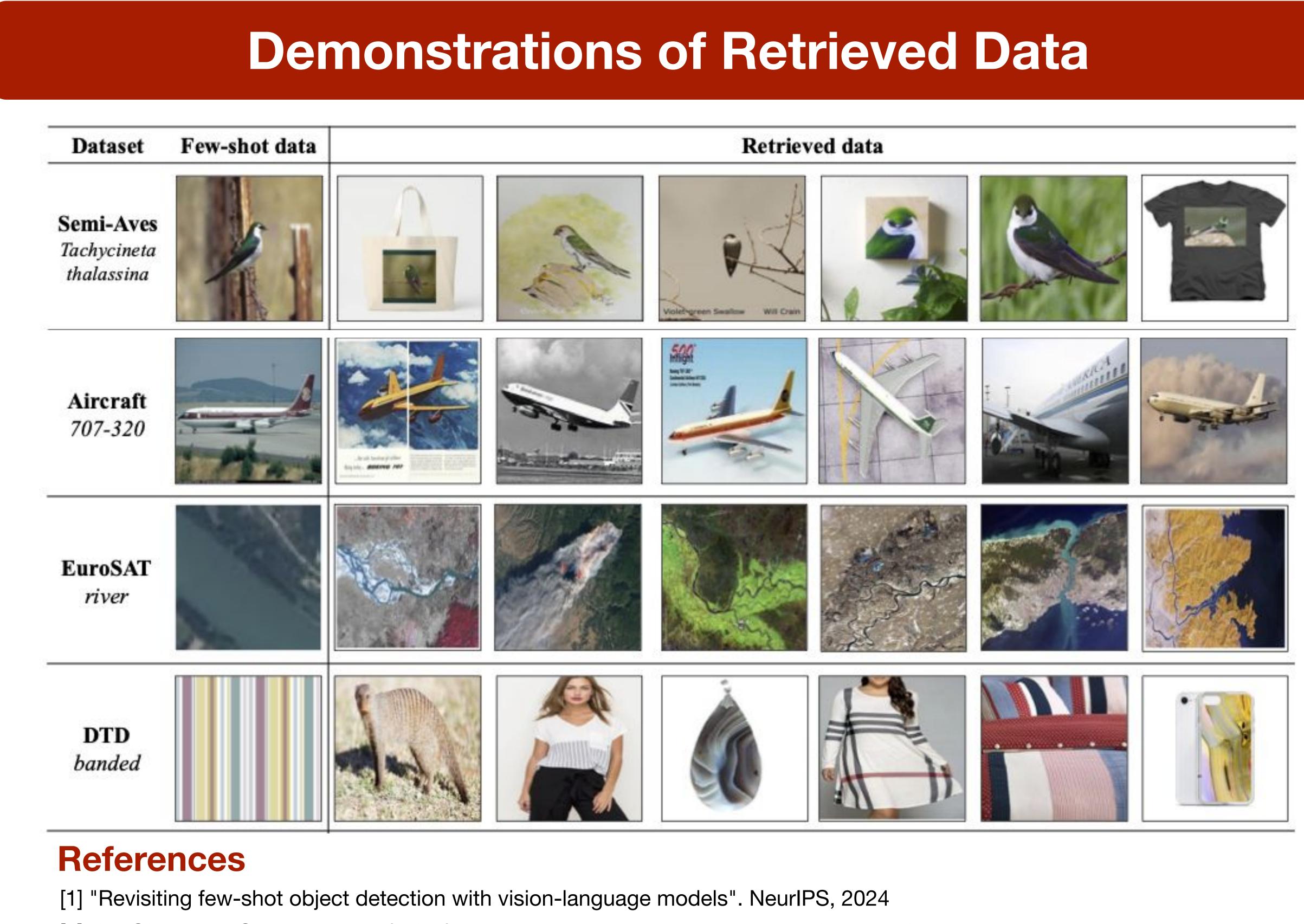
Shubham Parashar¹ Shu Kong²

²University of Macau

Insights and Methods



method CrossModal LP CVPI CLAP CVPI few-shot finetuning ours SWAT retrieval ours SWAT training



Results

strategy	method	venue & year	mean acc	uracy of nine	datasets
prompting-based retrieval-augmented	OpenCLIP REAL-Prompt REAL-Linear	CVPR 2023 CVPR 2024 CVPR 2024		56.3 62.6 64.8	
Teu le val-augmenteu	KLAL-Lincai	C VI K 2024	4-shot	8-shot	16-shot
prompt-learning	CoOp PLOT	IJCV 2022 ICLR 2023	61.0 62.9	64.6 65.7	68.4 68.7
adapter-based	CLIP-Adapter TIP-Adapter TIP-Adapter(f) TaskRes(e) CrossModal-LP CLAP	IJCV 2023 ECCV 2022 ECCV 2022 ECCV 2022 CVPR 2023 CVPR 2024	59.6 56.6 60.8 63.5 65.4 66.9	64.5 57.8 63.5 67.1 68.8 70.0	68.1 59.5 67.1 69.9 71.8 72.9
finetuning-based	few-shot finetuning SWAT	ours ours	$\frac{69.7^{+2.8}}{73.5^{+6.6}}$	$\frac{73.3^{+3.3}}{76.0^{+6.0}}$	$\frac{76.3^{+3.4}}{78.2^{+5.3}}$

e & yr	mem.	time	mean acc.	
R'23	2 GB	2 mins	71.8	
R'24	2 GB	2 mins	72.9	
	5 GB	20 mins	76.3+3.4	
		1 hr	78.2 ^{+5.3}	
	5 GB	2.5 hrs		

- Our simple few-shot finetuning surpasses SOTA FSR by 3 in accuracy, without overfitting issue.
- Our SWAT outperforms SOTA FSR by 6 in accuracy, with only small overhead.

- [2] "LAION-400m: Open dataset of clip-filtered 400 million image-text pairs". arXiv preprint arXiv:2111.02114, 2021.
- [3] "Decoupling representation and classifier for long-tailed recognition". ICLR, 2020.
- [4] "The Neglected Tails in Vision Language Model". CVPR, 2024.