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Motivation: substantial waste of irrigation water

Environmental Protection Agency reports that landscape irrigation
accounts for 1/3 of U.S. water use, over 9 billion gallons per day.
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Curb your water waste!
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Traditional irrigation methods are inefficient, high-cost

* Traditional “set it and forget it” * Soil moisture sensor
* Fixed schedule regardless of rainfall, * Limited measurement range (12 in)
solar radiation, plant and soil types, etc. * Frequent calibration and high
 Significant waste of water maintenance cost

(photos collected from google search)
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U.S. states widely adopt weather-based scheduling

* Weather-based method considers the water balance between incoming water and
outgoing water to calculate irrigation amount

* Relies on accurate rainfall measurement from nearby weather station

* Homeowners receive weekly irrigation guidance from government agency and
adjust irrigation valves manually
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Weather-based method is limited by inaccurate rainfall

 WaterMyYard (TX), CIMIS (CA) programs built 50-70 weather stations to obtain
accurate rainfall measurement

* However, our field experiments show that rainfall measured from nearby weather
station (only 1.7 miles away) differ as much as 54% from the actual hyperlocal rainfall
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Question: how to obtain more accurate hyperlocal rainfall
measurement?

current weather-based system )¢

1 PA
/ / / rainfall/ wea‘fher
ele, e imprecise station

irrigation ﬁ
—




TEXAS A&AM

UNIVERSITY

I

Our solution: estimating hyperlocal rainfall using doorbell

camera
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Our idea: exploit the multi-modal (visual, audio) information captured
by video recordings to estimate hyperlocal rainfall
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ERIC System: accurate, efficient, privacy-preserving
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N station App control model
irrigation data » ET loss from nearby weather stations

* plant and soil types from smartphone App
* voice commands, e.g. “stop/start irrigation”

video (optional)
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ERIC System: accurate, efficient, privacy-preserving

e Accurate rainfall estimation using ML
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Preserve user privacy by training and
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* Low-hardware cost: S75 for Raspberry Pi 4
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How to estimate rainfall with commodity camera?

e Existing methods

* Extraction-based: extracting rain streaks via
geometric and photometric models
* Need to tune camera settings for optimal visibility

* Faces significant challenges in practice: rain fog effects,
residual water, wind, shape distortion, poor lights

* Deep learning-based: CNN model

* Requires large training cost, expensive GPUs that are not
commonly available to homeowners

* Lacks rigorous evaluation on continuous streaming videos,
likely due to insufficient opensource video data

10
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How to estimate rainfall with commodity camera?

e Existing methods

* Extraction-based: extracting rain streaks via
geometric and photometric models
* Need to tune camera settings for optimal visibility

* Faces significant challenges in practice: rain fog effects,
residual water, wind, shape distortion, poor lights

* Deep learning-based: CNN model trained on
Internet retrieved or synthetic images

* Requires large training cost, expensive GPUs that are not
commonly available to homeowners

* Lacks rigorous evaluation on continuous streaming videos,
likely due to insufficient opensource video data

Challenge 1: how to develop model that is accurate, generalize (no tuning on camera), and robust?
Challenge 2: how to achieve high efficiency and low compute cost for processing video streams?
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Our key Intuition: estimate rainfall from reflections!

* Al = |In+1 _Inl

* Reflections capture the fast-moving
raindrops and splashes from the
ground in adjacent video frames

* Intensity and density of reflections
correlate to rainfall intensity

» Reflections is robust to different light
conditions, background, camera
placement, etc.

* Commodity doorbell camera ($30)
works!

(c) L1: nighttime, heavy rain (d) L2: daytime, heavy rain

Challenge 1: how to develop model that is accurate, generalize (no tuning on camera), and robust?
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Our key intuition: audio features also help!

* Rainfall introduces repetitive “drum-hitting” sound

* Heavier rains lead to increased amplitude and frequency-based audio features
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Our multi-modal rainfall estimation pipeline at the edge

 Lightweight neural network models (MLP with only 2 hidden layers)

* Cloud version uses CNN model for automatic feature extraction

=
I
visual rain detector I rain or not ‘
: features (classifier) (for each min) | |aggregation
videos
audio rain estimator ) rain intensity v cumulative rainfall
features (regressor) (mm/min) (mm/day)
-l sum

Challenge 2: how to achieve high efficiency and low compute cost for processing video streams?
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Our rainfall estimation method vs. existing methods

Extraction-based Photometric Yes
Deep learning-based  CNN No Low Low Maybe No
Reflection-based MLP No High High Yes Yes
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System deployment and evaluation

* Deployed at five locations with diverse background, light conditions, camera types,
camera placement, collecting over 750 hours of video data.

(a) L2: front door of residential home 1 (b) L3: ‘front door of res1dent1al home 2

S el G
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WaterwYard @

(c) L4: backyard of residential home 2 (d) LS: backyard of residential home 3
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ERIC achieves SOTA rainfall estimation performance

e £ 100
ERIC-edge ERIC-cloud g, - 80
- - u 4 —
iang et al. [25]  3DCNN [27 £ E 60
Jiang et al. [25] [27] (ours) (ours) E £ 60
- m
. £ A0 1
Camera model EZVIZ C5Si AXIS M/Q-E | NSC-DB2 / Topodome g 1 D; 0
Camera cost $100 $300 $30 2 F E 209
Background Cropped roads Cropped crossing| Diverse residential 1%:{10 14:00 15:00 v 1%~ﬂ{} 1200 15.00  16.00
Video size 7 hrs 215 hrs 750 hrs 2021-08-15 2021-08-15
Rain condition  Rain only Rain + no rain Rain + no rain e 5
Lightning  daytime only  daytime only | daytime + nighttime € 0.207 dmz'“d“;‘z '1;3" £,/ 4 raingauge tips (truth)
Model  Decomposition ~ 3DCNN ANN  ResNetl8  £0.15 human B = interpolated (truth)
# of params 10 0.45M 205 11.7M _ / € 3| 7 ERIC-edge
2010 ' & 5| === ERIC-cloud
MAPE 21.8% 197% || 123%  10.6% N r;ﬂ Y S R — -
257 _ | eV :
= 0.00 : : S P i ,
13:00 14:00 15:00 12:00 13:00 14:00 15:00
2021-09-18 2021-09-18
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ERIC can run real-time inference!

, ERIC-edge ERIC-cloud

Jiang et al. [25] 3DCNN [27] (ours) (ours)

Platform  Workstation Cloud Raspberry Pi 4 Cloud
RAM 32 GB 10 GB 0.5 GB 3 GB
GPU 12 GB 12 GB 0 GB 5 GB
Storage 0.5 GB 4 GB 0.5 GB 1.5 GB

Time 3.3 hrs 5 mins 12 mins 1.5 mins

real-time X v v v
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ERIC saves over 9,000 gallons of water!

B On-site rain gauge (truth) 228 ERIC system (ours) W8 Nearby weather station
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Conclusions

* Developed an end-to-end irrigation system, ERIC, which estimates rainfall from
commodity doorbell camera for precision residential irrigation

 Comparing with prior rainfall estimation methods, ERIC is:
v Accurate and robust: no tuning on camera, works in challenging conditions
v Efficient: real-time inference
v Low-cost: $75 Raspberry Pi 4
v Privacy-preserving: training and inference at the edge

* Field evaluation shows ERIC:

 achieves SOTA rainfall estimation performance
* saves over 9,000 gallons of water per month, translating to $29/month in utility savings
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Thank you!
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