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Results

Introduction Contributions

Our VLM-LLM approach outperforms existing Vid-LLM in short-span unusual
events (UAG-FunQA)

Table 2. Overall performance comparison of the Video-LLLM , VLM-LLM and Fine-tuned VLM approaches on three unusual activity
localization benchmarks: UAG-OOPS, UAG-SSBD and UAG-FunQA. For the R@1, IoU > m and RQ1,7T DD < p metrics, higher scores
indicate better performance, while for the /1’ metric, the lower scores are better.

1. We propose UAL-Bench, the first comprehensive benchmark for unusual activity

localization, which includes three datasets for unusual activity localization: UAG-OOPS
2], UAG-SSBD [3], UAG-FunQA [4].

Incident
"In 2018, a high-speed train collision In Turkey claimed 9 lives and injured over 80,

all due to a single human error—an operator’s split-second mistake In assigning
the wrong track, as revealed by haunting surveillance footage."

RQ1, ToU > m RQ1,TD < p(sec)
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Input IoU = 0 (due to no overlap)
Temporal Distance = abs(gs — ps) + abs(ge — pe)
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Nine observations to guide future research.

Activity Temporal Boundaries abs(gs — ps) ;abs(ge—pe)
{mipinige eyt ot f _l | Ground truth 1. VLM-LLM excels in localizing short-span unusual activities, outperforming existing Vid-LLMs
i 5 B B in short video datasets.
§ B o 2. VLM-LLM provides highly accurate and coherent explanations, enhancing the interpretability
—i i—'w of model predictions.
Motivation % - 3. VLM-LLM outperforms most vid-LLMs in standard temporal activity localization benchmarks
like Charades-STA.

Challenges Figure 2. An illustration of our proposed Temporal Distance. 4. Our benchmark datasets present challenges comparable to the Charades-STA dataset for

1. Existing Vid-LLMs’ pretraining data do not represent Unusual Activities Sufficiently. unusual activity localization. | | | N -
2. Common Metric to measure Temporal Activity Localization: Intersection over Union 3. To address the challenge of no zero-shot solution available for unusual activity S. Thet {oUzm metric becomes unreliable for evaluating short-span videos, requiring specialized

(loV) fails to measure performance when the Prediction and Ground Truth spans are localization, we Introduce a novel integration of Language and Vision Models TeTes.

6. There are trade-offs between model complexity and performance, especially in terms of
inference time for VLM-LLM. Yet it yield 2X accuracy boost compared to Vid-LLMSs.
Long-duration diagnosis videos, like those in UAG-SSBD, require tailored models for accurate
iInterpretation.

close but do not overlap (VLM-LLM)

3. No zero-shot solution has been proposed to address the task of unusual activity LLM Agent /.
localization using Large Vision Language Models (VLM) and LLMs

2 = 2 - Vision Language Model Activit 8. Instruction-tuning suffers due to the lack of time-awareness in the video encoder, impacting
Temporal loU Visualization InPUt Video : y
Vid_LLM Prediction E (BLIP-2 /VldeOLLaMA) DeSCrlpthn performance.
Training Datasets Activities N e  AsaoiOurp T T T T 9. Explicit content in annotations can trigger model refusals, requiring careful wording during
Frame Time-aware annotation.
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