

UAL-Bench: The First Comprehensive Unusual Activity Localization Benchmark Kangda Wei¹ Tian Liu¹ Shu Kong² Hasnat Md Abdullah¹ Ruihong Huang¹

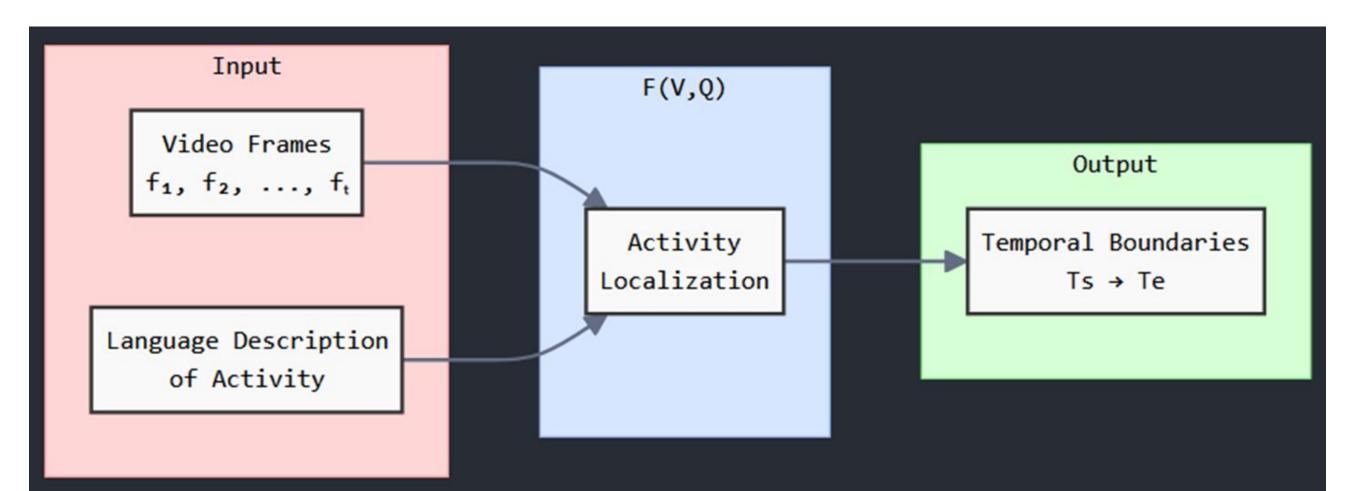
Introduction

Incident

"In 2018, a high-speed train collision in Turkey claimed 9 lives and injured over 80, all due to a single human error—an operator's split-second mistake in assigning the wrong track, as revealed by haunting surveillance footage."

Defining Unusual Activities

Defining Unusual Activity Localization Task [1]



Motivation

Challenges

- 1. Existing Vid-LLMs' pretraining data do not represent Unusual Activities Sufficiently.
- 2. Common Metric to measure Temporal Activity Localization: Intersection over Union (IoU) fails to measure performance when the Prediction and Ground Truth spans are close but do not overlap
- 3. No zero-shot solution has been proposed to address the task of unusual activity localization using Large Vision Language Models (VLM) and LLMs

Vid-LLM **Training Datasets**

- ActivityNet
- CharadesSTA
- HowTo100M
- MSRVTT
- MSVD
- DiDeMo
- WebVid-2M

Activities

- Sports and Physical
- Household and Daily Tasks
- Entertainment and Leisure
- Work and DIY Activities
- Interactions with Objects

round Truth			
		loU: 0.303	
	/isualizati	on	
	/isualizati	on	
Prediction	/isualizati	on	
Prediction	/isualizati	on	
Ground Truth	/isualizati	on	

¹Texas A&M University ²University of Macau

Contributions

1. We propose UAL-Bench, the first comprehensive benchmark for unusual activity localization, which includes three datasets for unusual activity localization: UAG-OOPS [2], UAG-SSBD [3], UAG-FunQA [4].

Table 1. Statistics of the proposed datasets compared to standard temporal localization dataset Charades-STA [19]. Despite being shorter in average duration, OOPS-UAG-Instruct contains more detailed descriptions than Charades-STA.

Dataset	# of Videos	Avg Duration (seconds)	Avg Description length (words)			
UAG-OOPS	1,589	8.34	92			
UAG-SSBD	75	90	7			
UAG-FunQA	172	7.26	5			
OOPS-UAG-Instruct	3,778	9.83	93.52			
Charades-STA [19]	3,720	30.59	33			

existing metric, providing more reliable evaluation in certain scenarios

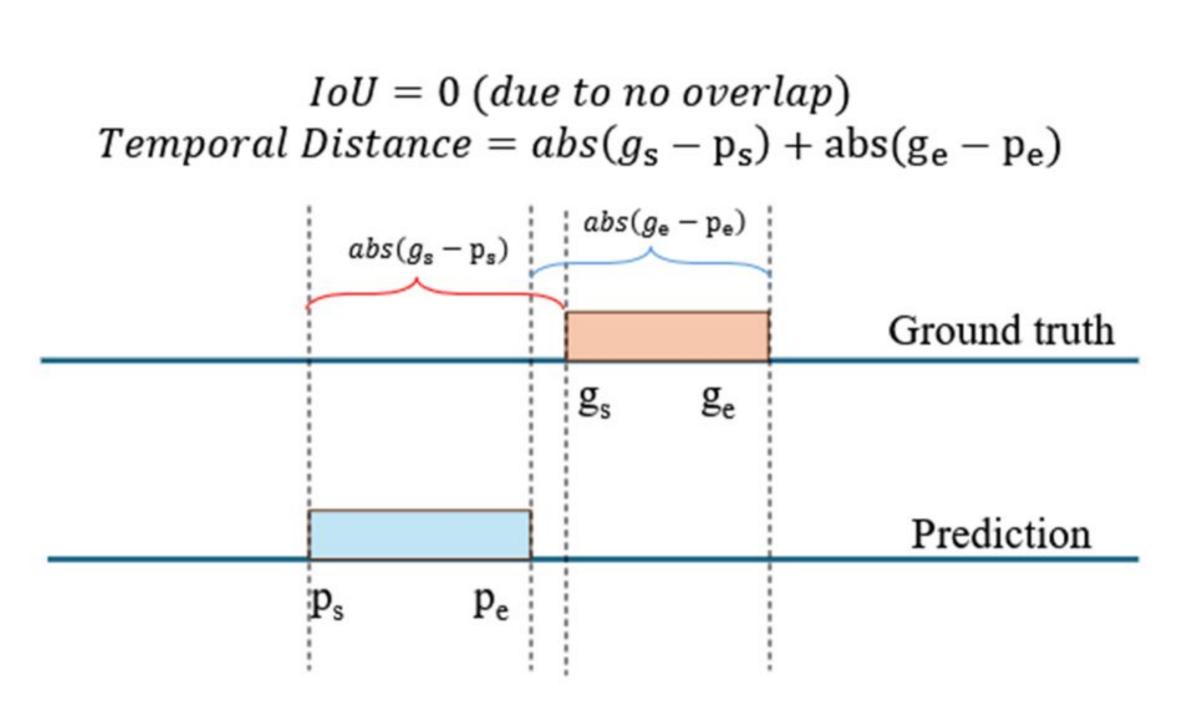
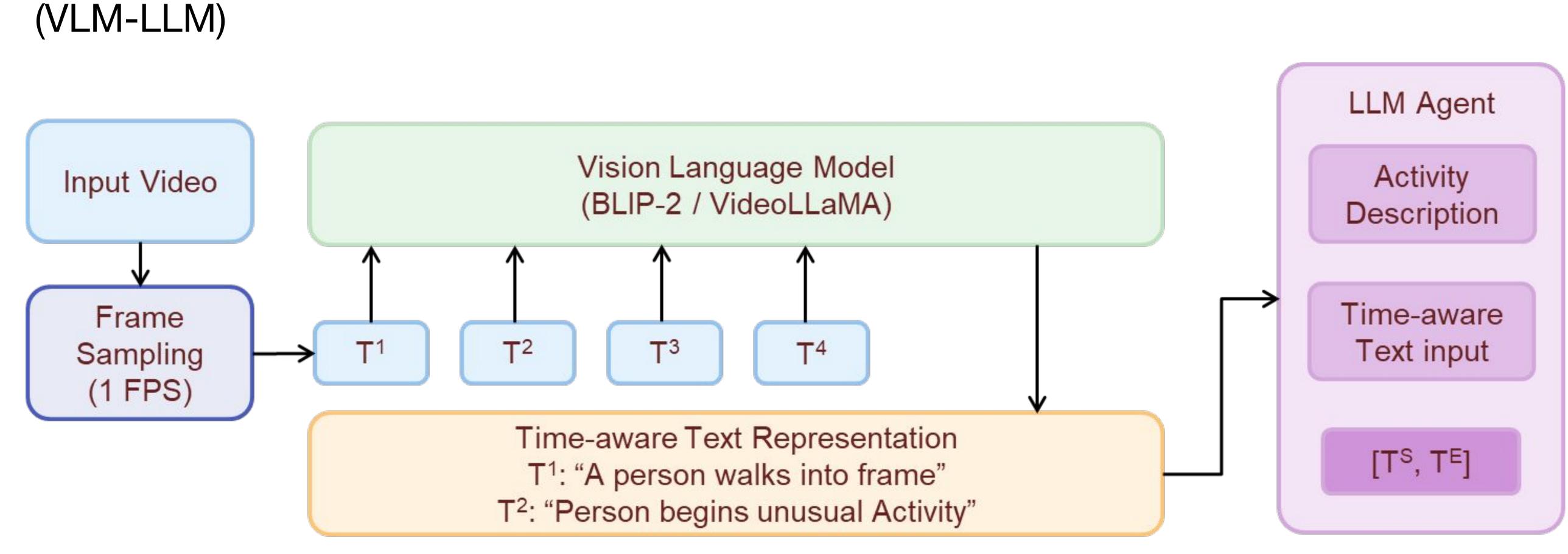
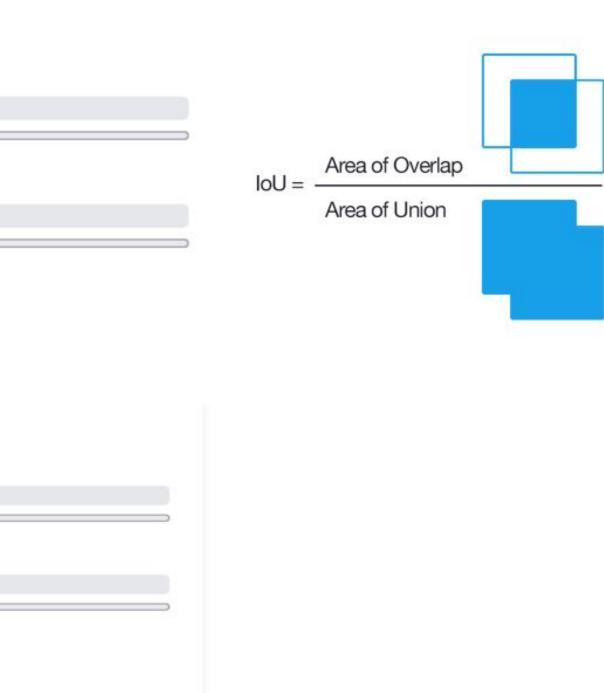
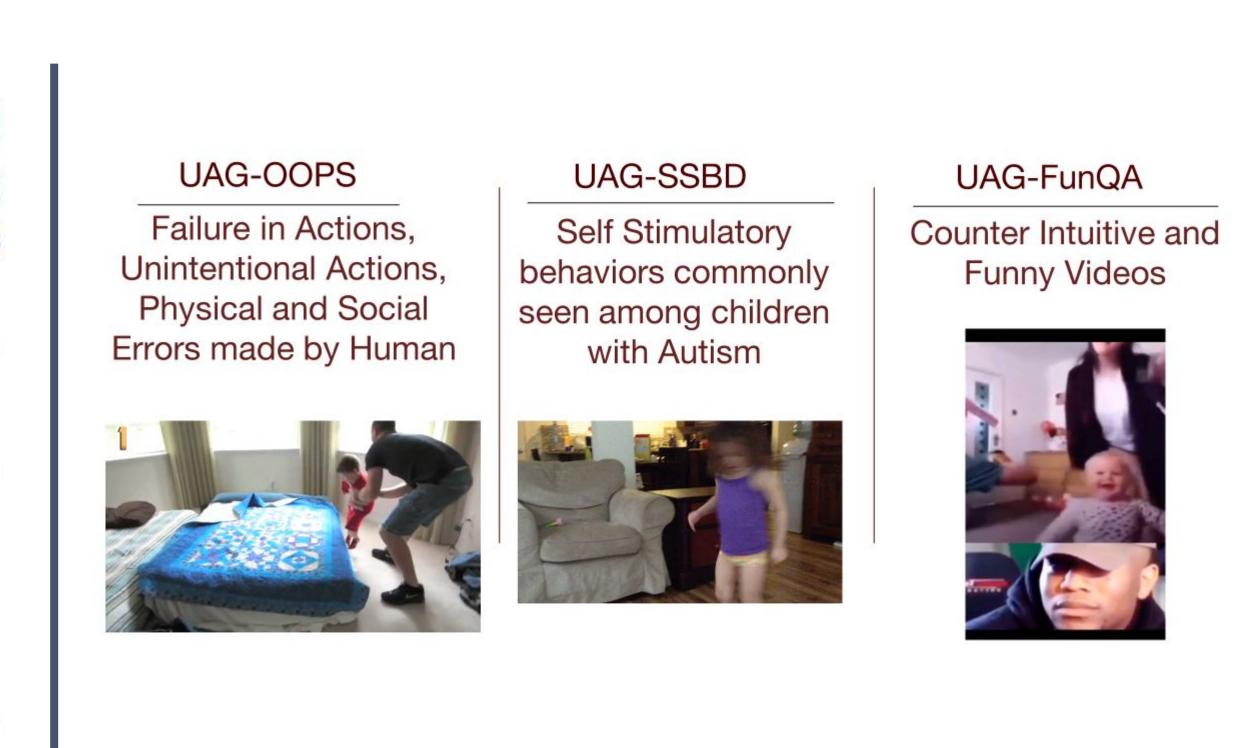


Figure 2. An illustration of our proposed Temporal Distance.

3. To address the challenge of no zero-shot solution available for unusual activity localization, we introduce a novel integration of Language and Vision Models





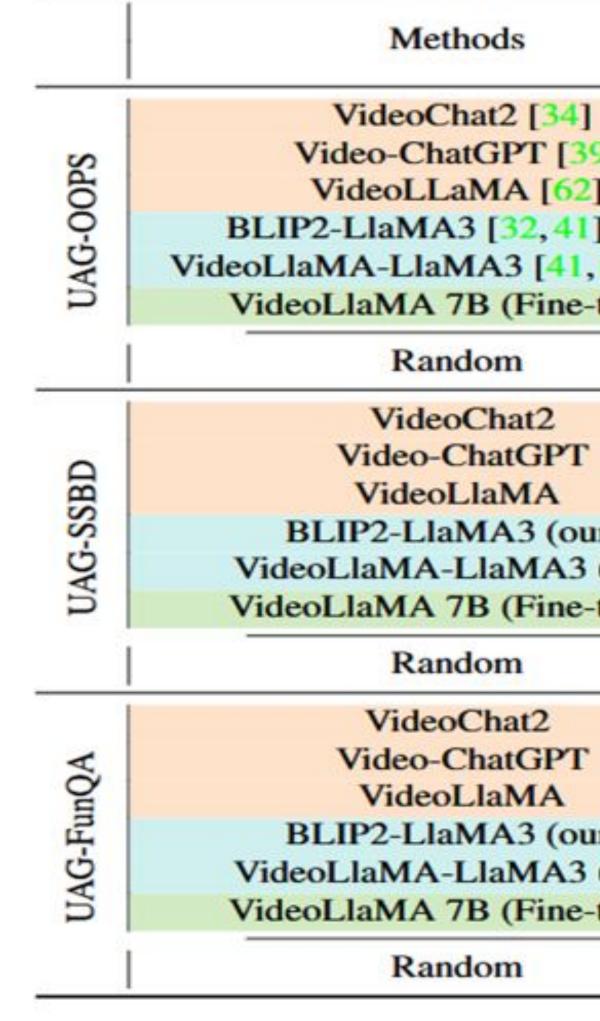


2. We introduce a new metric, Temporal Distance, $TD \leq P$ to address the limitations in

Funny Videos

Our VLM-LLM approach outperforms existing Vid-LLM in short-span unusual events (UAG-FunQA)

Table 2. Overall performance comparison of the Video-LLM, VLM-LLM and Fine-tuned VLM approaches on three unusual activity localization benchmarks: UAG-OOPS, UAG-SSBD and UAG-FunQA. For the $R@1, IoU \ge m$ and $R@1, TD \le p$ metrics, higher scores indicate better performance, while for the mTD metric, the lower scores are better.



Nine observations to guide future research.

- in short video datasets.
- of model predictions.
- like Charades-STA.
- unusual activity localization.
- metrics.
- interpretation.
- performance.
- annotation.

[1] J. Gao, et al (2017) "Tall: Temporal activity localization via language query." In: ICCV

- Conference on Computer Vision Workshops

Results

	$R@1, IoU \ge m$			$ R@1, TD \leq p(sec)$					
	m=0.3	m=0.5	m=0.7	mIoU(0-1)	p=0	p=1	p=3	p=5	mTD(sec)
]	16.49	5.98	1.95	0.12	0.00	1.01	8.37	23.10	9.31
39]	25.49	10.70	3.15	0.18	0.00	1.32	8.37	25.61	11.50
2]	40.72	20.77	6.23	0.27	0.06	2.01	14.85	33.79	11.22
[](ours)	19.07	7.17	2.45	0.15	0.00	1.38	27.00	53.74	5.85
,62] (ours)	19.38	7.93	2.08	0.15	0.00	1.89	26.12	55.13	5.72
-tuned)	2.96	0.50	0.19	0.04	0.00	1.26	10.07	22.84	14.09
	12.21	4.47	1.45	0.10	0.00	0.31	2.77	5.29	24.10
	2.88	0.96	0.00	0.02	0.00	0.00	1.92	2.88	139.63
C	4.81	2.88	0.00	0.03	0.00	0.00	0.96	2.88	93.99
	15.38	8.65	1.92	0.11	0.00	0.00	3.85	6.73	96.55
urs)	1.92	1.92	1.92	0.03	0.00	0.00	0.96	1.92	68.05
(ours)	2.88	0.96	0.00	0.03	0.00	0.00	0.96	4.81	70.38
-tuned)	0.00	0.00	0.00	0.01	0.00	0.00	0.00	1.92	105.27
	10.58	5.77	3.85	0.10	0.00	0.00	1.92	1.92	87.73
	12.79	4.65	3.49	0.08	0.00	2.33	23.84	44.77	7.48
	1.16	0.58	0.00	0.01	0.00	0.00	22.67	44.77	53.42
	2.91	0.58	0.00	0.02	0.00	0.00	4.07	8.72	31.64
urs)	18.60	9.30	5.23	0.12	0.00	9.30	39.53	60.47	5.43
(ours)	12.21	4.65	2.33	0.09	0.00	5.23	44.19	65.70	4.93
-tuned)	6.40	2.33	0.0	0.01	0.00	5.81	29.65	47.67	8.19
	5.81	1.74	0.58	0.05	0.00	0.00	1.74	4.65	27.27

1. VLM-LLM excels in localizing short-span unusual activities, outperforming existing Vid-LLMs

2. VLM-LLM provides highly accurate and coherent explanations, enhancing the interpretability

3. VLM-LLM outperforms most vid-LLMs in standard temporal activity localization benchmarks

4. Our benchmark datasets present challenges comparable to the Charades-STA dataset for

5. The $I_{OU} \ge m$ metric becomes unreliable for evaluating short-span videos, requiring specialized

6. There are trade-offs between model complexity and performance, especially in terms of inference time for VLM-LLM. Yet it yield 2X accuracy boost compared to Vid-LLMs.

7. Long-duration diagnosis videos, like those in UAG-SSBD, require tailored models for accurate

8. Instruction-tuning suffers due to the lack of time-awareness in the video encoder, impacting

9. Explicit content in annotations can trigger model refusals, requiring careful wording during

References

[2] Dave Epstein et. al. (2020) "Oops! predicting unintentional action in video" In: CVPR

[3] Shyam Rajagopalan et. al (2013) "Self-stimulatory behaviours in the wild for autism diagnosis." In: Proceedings of the IEEE International

[4] Binzhu Xie et al. (2025) "Funqa: Towards surprising video comprehension". In: European Conference on Computer Vision